ON A PROBLEM OF SPENCER

J. B. SHEARER

Received 15 December 1983
Revised 15 March 1984

Let $X_1, ..., X_n$ be events in a probability space. Let ϱ_i be the probability X_i occurs. Let ϱ_i be the probability that none of the X_i occur. Let G be a graph on [n] so that for $1 \le i \le n$ X_i is independent of $\{X_j | (i, j) \notin G\}$. Let f(d) be the sup of those x such that if $\varrho_1, ..., \varrho_n \le x$ and G has maximum degree $\le d$ then $\varrho > 0$. We show f(1) = 1/2, $f(d) = (d-1)^{d-1}d^{-d}$ for $d \ge 2$. Hence $\lim_{d \to \infty} df(d) = 1/e$. This answers a question posed by Spencer in [2]. We also find a sharp bound for ϱ_i in terms of the ϱ_i and G.

The probabilistic method is a nonconstructive technique for showing the existence of combinatorial configurations. It works as follows. Suppose we wish to show a class of configurations contains a particular configuration satisfying certain conditions $C_1, C_2, ..., C_n$. We impose a probability distribution on the class of configurations. We let X_i be the event "condition C_i is violated". We let g_i be the probability that X_i occurs. We let ϱ be the probability that $\overline{X}_1 \cap \overline{X}_2 \cap ... \cap \overline{X}_n$ occurs (i.e. ϱ is the probability that all of the conditions C_i are satisfied). It is easy to show by induction on n that $\varrho \ge 1 - \varrho_1 - \varrho_2 - \dots - \varrho_n$. Hence if $\varrho_1 + \varrho_2 + \dots + \varrho_n < 1$ then $\varrho > 0$ which implies the existence of a configuration satisfying all of the conditions $C_1, ..., C_n$. If all the ϱ_i are equal say $\varrho_1 = \varrho_2 = ... = \varrho_n = x$ then the condition $\varrho_1 + \varrho_2 + ... + \varrho_n < 1$ becomes nx < 1. It was observed by Lovász [1] that under certain conditions this condition could be weakened and still imply $\varrho > 0$. We say a graph G on [n] is a dependence graph for the events $X_1, ..., X_n$ if for $1 \le i \le n$ X_i is independent of $\{X_j|(i,j)\notin G\}$. Suppose G has maximum degree d. Then Lovász showed $4dx \le 1$ implies $\varrho > 0$. Spencer [2] noted this could be improved to $e(d+1)x \le 1$ implies $\varrho > 0$ or more precisely that $x \le d^d/(d+1)^{d+1}$ implies $\varrho > 0$. Spencer defined f(d) as the sup of those x which imply (d fixed) g>0 and asked what is $\lim_{n \to \infty} df(d)$. In this paper we answer this question by finding an exact formula for f(d). First however we give a sharp estimate for ϱ in terms of the ϱ_i and G which is of independent interest.

242 J. B. SHEARER

Theorem 1. Let S be a subset of [n]. Define

$$P(S) = \sum_{\substack{S \subseteq T \\ T \text{ ind in } G}} (-1)^{|T|-|S|} \prod_{i \in T} \varrho_i.$$

If P(S) is ≥ 0 for all S then $\varrho \ge P(\emptyset)$. Otherwise $\varrho \ge 0$. Furthermore these bounds are the best possible. (We interpret the empty sum as 0, the empty product as 1. T ind or independent in G means G contains no edges connecting points in T.)

Proof. Let R be an independent set in G. Note

$$\sum_{R \subseteq S} P(S) = \sum_{R \subseteq S} \sum_{\substack{T \supseteq S \supseteq R \\ T \text{ ind}}} (-1)^{|T| - |S|} \prod_{i \in T} \varrho_i = \sum_{\substack{R \subseteq T \\ T \text{ ind}}} \left[\prod_{i \in T} \varrho_i \right] (-1)^{|T|}$$
$$\sum_{R \subseteq S \subseteq T} (-1)^{|S|} = \prod_{i \in R} \varrho_i.$$

Letting $R=\emptyset$ this implies $\sum_S P(S)=1$. Hence if $P(S)\ge 0$ for all S we can let Y be a random variable taking on values S in $\{0,1\}^n$ with probability P(S). Let Y_1, \ldots, Y_n be the first through nth components of Y. The probability that $Y_i=1$ is ϱ_i (let $R=\{i\}$). Furthermore it is easy to verify that G is a dependence graph for Y. For $S\subseteq [n]$ let $\alpha(S)$ be the probability that Y is 0 on S (i.e. that none of the events $\{X_i|i\in S\}$ occur), B(S) be the probability that Y is 0 on S. Note

$$B(S) = \sum_{S' \subseteq S} P(S') =$$

$$= \sum_{S' \subseteq S} \sum_{\substack{S' \subseteq T \\ T \text{ ind in } G}} (-1)^{|T| - |S|} \prod_{i \in T} \varrho_i = \sum_{T \text{ ind}} (-1)^{|T|} (\prod_{i \in T} \varrho_i) (\sum_{S' \subseteq S \cap T} (-1)^{-|S'|}) =$$

$$= \sum_{\substack{T \text{ ind} \\ S \cap T = \emptyset}} (-1)^{|T|} \prod_{i \in T} \varrho_i = \sum_{\substack{T \text{ ind} \\ T \subseteq S}} (-1)^{|T|} \prod_{i \in T} \varrho_i.$$

Now $\varrho = \alpha([n])$ and $P(\vartheta) = B([n])$. Hence we wish to show $\alpha([n]) \ge B([n])$. If B(S) = 0 for some S then B([n]) = 0 also and $\alpha([n]) \ge B([n])$ trivially. Hence we may assume $B(S) \ne 0$ for all S. Then we claim that if $S_1 \subseteq S_2$ then $\frac{\alpha(S_1)}{B(S_1)} \le \frac{\alpha(S_2)}{B(S_2)}$. We prove this by induction on $|S_2|$. First note if $S = \emptyset$, $\alpha(S) = B(S) = 1$ and if $S = \{i\}$, $\alpha(S) = B(S) = 1 - \varrho_i$. It clearly suffices to prove the claim for $|S_2 - S_1| = 1$. Let $S_2 = S_1 \cup \{i\}$. Let $S_1 = T_1 \cup T_2$ where T_1 consists of points of S_1 not adjacent to i in G while T_2 consists of points of S_1 adjacent to i in G. Note $B(S_2) = B(S_1) - \varrho_i B(T_1)$. Furthermore $\alpha(S_2) = \text{probability } (X \text{ is } 0 \text{ on } S_1) = \text{probability } (X \text{ is } 0 \text{ on } S_1) = \text{probability } (X \text{ is } 0 \text{ on } S_1) = \alpha(T_1)\varrho_i$ (by choice T_1 , definition dependence graph). Therefore $\alpha(S_2) \ge \alpha(S_1) - \varrho_i \alpha(T_1)$. Hence

$$\frac{\alpha(S_2)}{B(S_2)} - \frac{\alpha(S_1)}{B(S_1)} \ge \frac{\alpha(S_1) - \varrho_i \alpha(T_1)}{B(S_1) - \varrho_i B(T_1)} - \frac{\alpha(S_1)}{B(S_1)} = \frac{\varrho_i [B(T_1) \alpha(S_1) - \alpha(T_1) B(S_1)]}{B(S_1) (B(S_1) - \varrho_i B(T_1))} = \frac{\varrho_i B(T_1)}{B(S_1) - \varrho_i B(T_1)} \left[\frac{\alpha(S_1)}{B(S_1)} - \frac{\alpha(T_1)}{B(T_1)} \right] \ge 0$$

(by induction hypothesis since $T_1 \subseteq S_1$) as desired. Now $\frac{\varrho}{P(\emptyset)} = \frac{\alpha([n])}{B([n])} \cong \frac{\alpha(\emptyset)}{B(\emptyset)} = 1 \Rightarrow \varrho \cong P(\emptyset)$ as desired. Clearly Y shows this bound is the best possible. It remains to show that if P(S) < 0 for some S then we can define a random variable $Y = (Y_1, ..., Y_n)$ for which G is a dependence graph, probability $(Y_i = 1)$ is ϱ_i and probability $(Y_1 = Y_2 = ... = Y_n = 0)$ is 0. Let A be a subset of [n] and define (for $S \subseteq A$).

$$P_{A}(S) = \sum_{\substack{S \subseteq T \subseteq A \\ T \text{ ind in } G}} (-1)^{|T|-|S|} \prod_{i \in T} \varrho_{i}.$$

Suppose for some A $P_A(\emptyset) < 0$ but $P_A(B) \ge 0$ for $\emptyset \subset B \subseteq A$ (as we will see such an A must exist). Let $Q_A(B) = \prod_{i \in B} \varrho_i \prod_{i \in A - B} (1 - \varrho_i)$. Choose λ so that $\lambda P_A(\emptyset) + (1 - \lambda)Q_A(\emptyset) = 0$. Let Y_A be a random variable taking on values B in $\{0, 1\}^A$ with probability $\lambda P_A(B) + (1 - \lambda)Q_A(B)$. Extend Y_A to a random variable Y taking on values $B \cup C$ $(B \subseteq A, C \subseteq [n] - A)$ in $\{0, 1\}^{[n]}$ with probability

$$[\lambda P_{A}(B) + (1-\lambda)Q_{A}(B)] \prod_{i \in C} \varrho_{i} \prod_{i \in [n]-A-C} (1-\varrho_{i}).$$

It is easy to verify that this Y satisfies the given conditions with $\varrho=0$ as desired. It remains to show such an A exists. Suppose $P_A(B)<0$ and let C consists of those elements of A-B not adjacent (in G) to any element of B. Then

$$P_{A}(B) = \sum_{\substack{B \subseteq T \subseteq A \\ T \text{ ind in } G}} (-1)^{|T|-|B|} \prod_{i \in T} \varrho_{i} = \prod_{i \in B} \varrho_{i} \Big[\sum_{\substack{T \subset C \\ T \text{ ind in } G}} (-1)^{|T|} \prod_{i \in T} \varrho_{i} \Big] = \Big(\prod_{i \in B} \varrho_{i} \Big) P_{C}(\emptyset).$$

This assumes B is independent in G which must be true as otherwise $P_A(B)=0$ a contradiction. Hence we may choose A so that $P_A(\emptyset)<0$ but $P_B(\emptyset)\ge0$ for any proper subset B of A. Then $P_A(S)\ge0$ for any $S\subset A$, $S\ne\emptyset$. For suppose $P_A(S)<0$, $S\ne0$, then by the above $\exists C\subseteq A-S$ so that $P_C(\emptyset)<0$ a contradiction. This completes the proof of Theorem 1.

Remark 1. Suppose we take all the ϱ_i to be equal to say q. Then $P(\emptyset)$ is a polynomial of q of degree equal to $\alpha(G)$ (the maximum size of an independent set in G) $\leq n$. Since finding $\alpha(G)$ in NP-complete in general evaluating $P(\emptyset)$ must also be NP-complete in general. Hence the bound given by the above theorem may be useless in practice.

However there are special cases where we can evaluate the bound in Theorem 1 exactly. Let all the $\varrho_i = x$ and define $F_G(x) = P(\emptyset)$. Let a be a point in G, G_1 be G with a deleted, G_2 be G with a and all its neighbors deleted. Then we have $F_G(x) = F_{G_1}(x) - xF_{G_2}(x)$. Furthermore, if G is the disjoint union of two graphs G_1 , G_2 , then $F_G(x) = F_{G_1}(x)F_{G_2}(x)$. Now define rooted trees $T_m(n)$ inductively as follows. $T_m(0)$ consists of a single point. $T_m(n+1)$ is formed by connecting the roots of m copies of $T_m(n)$ to the new root. Now applying the above identities (with a= the

J. B. SHEARER

root) we obtain $F_{T_m(n+1)}(x) = [F_{T_m(n)}(x)]^m - x[F_{T_m(n-1)}(x)]^{m^2}$, $n \ge 1$. Also $F_{T_m(1)}(x) = (1-x)^m - x$ and $F_{T_m(0)}(x) = 1-x$. Let $a_{-2} = a_{-1} = 1$ and $a_{n+1} = a_n^m - x a_{n-1}^m$. Then $F_{T_m(n+1)}(x) = a_{n+1}$. We ask for what values of x is $a_n > 0$ for all n. Let $b_n = a_n/a_{n-1}^m$ so $b_{-1} = 1$, $b_{n+1} = 1-x/b_n^m$. It suffices to find those values of x for which $b_n > 0$ for all n. Now $b_{n+1} - b_n = x\left(\frac{-1}{b_n^m} + \frac{1}{b_{n-1}^m}\right)$ so $0 < b_n \le b_{n-1} \Rightarrow b_{n+1} \le b_n$. Also $b_0 = 1 - x \le 1 = b_{-1}$. Hence if the b_n 's are all positive they must decrease to a limit say λ . Then $\lambda = 1 - x/\lambda^m$ or $x = \lambda^m - \lambda^{m-1}$. Now $\lambda^m - \lambda^{m-1}$ is maximized when $\lambda = m/(m+1)$ with value $m^m/(m+1)^{m+1}$. Hence $x \le m^m/(m+1)^{m+1}$. Furthermore if $x = \lambda^m - \lambda^{m+1}$ or $\lambda = 1 - x/\lambda^m$, $m/(m+1) \le \lambda \le 1$ then $b_n > \lambda \Rightarrow b_{n+1} = 1 - x/b_n^m > 1 - x/\lambda^m = \lambda$ which implies the b_n 's decrease to a limit (which must be λ) as $n \to \infty$. Hence we have shown $a_n > 0$ for all n iff $x \le m^m/(m+1)^{m+1}$. Note the degree of any vertex in $T_m(n)$ is $m \le m+1$. Hence since Theorem 1 is sharp we have $m \ge m^m/(m+1)^m = 1$ or $m \le 1$ or $m \le 1$. In fact we have

Theorem 2. $f(d) = (d-1)^{d-1}/d^d$, $d \ge 2$, f(1) = 1/2. Recall f(d) is the sup of those x for which maximum degree of $G \le d$, $\varrho_1, \varrho_2, ..., \varrho_n \le x$ imply $\varrho > 0$.

Proof. f(1)=1/2 is trivial. We have just seen that letting G be the graphs $T_m(n)$ forces $f(d) \le (d-1)^{d-1}/d^d$, $d \ge 2$. It remains to show that if G is a graph on [n] with each vertex having degree $\leq d$ $(d \geq 2)$ and all $\varrho_i \leq x \leq (d-1)^{d-1}/d^d$ then $\varrho > 0$. Let $\lambda = 1 - x/\lambda^m$, $m/(m+1) \le \lambda \le 1$, m = d-1. Let $S_2 \subseteq [n]$ with $S_2 = S_1 \cup \{i\}$. Let $S_1 = T_1 \cup T_2$ where T_1 consists of points of S_1 not adjacent to i in G while T_2 consists of points of S_1 adjacent to i in G. Suppose i has degree $\leq d-1$ in G restricted to S_2 (i.e. $|T_2| \le m$). Define α as in the proof of Theorem 1. Assume $x \ge 0$. Then we claim $\alpha(S_2) > \lambda \alpha(S_1)$. This follows by induction on $|S_2|$. If $|S_2| = 1$ then since $\lambda = 1 - x/\lambda^m \Rightarrow 1 - x > \lambda$ (as x > 0) $\Rightarrow \alpha(S_2) = 1 - \varrho_i \ge 1 - x > \lambda = \lambda \alpha(\emptyset) = \lambda \alpha(S_1)$ as desired. Suppose $|S_2| > 1$. As in the proof of Theorem 1 $\alpha(S_2) \ge \alpha(S_1) - \varrho_i \alpha(T_1) \ge$ $\geq \alpha(S_1) - x\alpha(T_1)$. By the induction hypothesis $\alpha(S_1) > \lambda^{|T_2|}\alpha(T_1)$ (since all points of T_2 have degree $\leq d-1$ in S_1). If $|T_2|=0$ this is not valid but then we have $\alpha(S_2)=$ $= (1 - \varrho_i)\alpha(S_1) > \lambda\alpha(S_1) \text{ as above. Hence } \alpha(S_2) > \left[1 - \frac{x}{|T_2|}\right]\alpha(S_1) \ge (1 - x/\lambda^m)\alpha(S_1) =$ $=\lambda\alpha(S_1)$ as desired. Now suppose i has degree d in S_2 . Then as above $\alpha(S_2)$ $>(1-x/\lambda^d)\alpha(S_1)=(2-1/\lambda)\alpha(S_1)$. Now $m\ge 1$ so $\lambda\ge 1/2$ so $(2-1/\lambda)\ge 0$. Hence $\alpha(S_1) > 0 \Rightarrow \alpha(S_2) > 0$. It follows by induction on $|S_2|$ that $\alpha(S_2) > 0$. Letting $|S_2| = |n|$ we have $\varrho = \alpha([n]) > 0$ as desired. In fact if G is connected we have $\varrho > (2-1/\lambda)\lambda^{n-1}$. (Since if G is connected all induced proper subgraphs of G contain points of degree $\leq (d-1)$. Hence unless $|S_2| = n$ we can choose i to have degree $\leq (d-1)$ in G restricted to S_2 .) We have assumed x>0 but if x=0 then clearly g=1. This completes the proof of Theorem 2.

References

- [1] P. Erdős and L. Lovász, Problems and Results on 3-Chromatic Hypergraphs and Some Related Questions, Infinite and Finite Sets, Colloquia Mathematica Societatis János Bolyai, Keszthely (Hungary), 1973, 609—627.
- [2] J. Spencer, Asymptotic Lower Bounds for Ramsey Functions, Discrete Math., 20 (1977), 69-76.

James B. Shearer

Department of Mathematics U. C. Berkeley Berkeley, CA 94720 U.S.A.

current address: IBM Research P.O.B. 218 Yorktown Heights, NY 10598 U.S.A.